Bezafibrate Reduces mRNA Levels of Adipocyte Markers and Increases Fatty Acid Oxidation in Primary Culture of Adipocytes

Author:

Cabrero Àgatha1,Alegret Marta1,Sánchez Rosa M.1,Adzet Tomás1,Laguna Juan C.1,Vázquez Manuel1

Affiliation:

1. Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain

Abstract

The molecular mechanisms by which peroxisome proliferator–activated receptor (PPAR) activation by fibrates reduces fat deposition and improves insulin sensitivity are not completely understood. We report that exposure of a rat primary culture of adipocytes for 24 h to the PPAR activator bezafibrate increased the mRNA levels of crucial genes involved in peroxisomal and mitochondrial β-oxidation. The mRNA levels of the peroxisomal β-oxidation rate-limiting enzyme acyl-CoA oxidase and of the muscle-type carnitine palmitoyl transferase I (M-CPT-I), which determines the flux of mitochondrial β-oxidation, increased by 1.6-fold (P < 0.02) and 4.5-fold (P = 0.001), respectively. These changes were accompanied by an increase in the transcript levels of the uncoupling protein-2 (UCP-2; 1.5-fold induction; P < 0.05) and UCP-3 (3.7-fold induction; P < 0.001), mitochondrial proteins that reduce ATP yield and may facilitate the oxidation of fatty acids. Furthermore, bezafibrate increased the mRNA levels of the fatty acid translocase (2-fold induction; P < 0.01), suggesting a higher fatty acid uptake into adipocytes. In agreement with these changes, bezafibrate caused a 1.9-fold induction (P < 0.02) in 9,10-[3H]palmitate oxidation. Moreover, bezafibrate reduced the mRNA expression of several adipocyte markers, including PPARγ (30% reduction; P = 0.05), tumor necrosis factor-α (33% reduction; P < 0.05), and the ob gene (26% reduction). In contrast, adipocyte fatty acid binding protein mRNA levels increased (1.5-fold induction; P < 0.01), pointing to a mobilization of fatty acids to mitochondria and peroxisomes. The reduction of the adipocyte markers caused by bezafibrate was accompanied by an increase in the mRNA levels of the preadipocyte marker Pref-1 (1.6-fold induction; P < 0.01). Some of the changes observed in the primary culture of rat adipocytes also were studied in the epididymal white adipose tissue of bezafibrate-treated rats for 7 days. In vivo, M-CPT-I mRNA levels increased (4.5-fold induction; P = 0.001) in epididymal white adipose tissue of bezafibrate-treated rats. Similarly, fatty acid translocase (2.6-fold induction; P = 0.002) and Pref-1 (5.6-fold induction) mRNA levels increased, although differences in the latter were not significant because of huge individual variations. These results indicate that exposure of adipocytes to bezafibrate, independent of its hepatic effects, increases the degradation of fatty acids, reducing their availability to synthesize triglycerides. As a result, some degree of dedifferentiation of adipocytes to preadipocyte-like cells is achieved. These changes may be involved in the reduction in fat depots and in the improvement of insulin sensitivity observed after bezafibrate treatment.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3