Insulin-Mediated Hemodynamic Changes Are Impaired in Muscle of Zucker Obese Rats

Author:

Wallis Michelle G.12,Wheatley Catherine M.1,Rattigan Stephen1,Barrett Eugene J.2,Clark Andrew D.H.1,Clark Michael G.1

Affiliation:

1. Department of Biochemistry, University of Tasmania, Hobart, Tasmania, Australia

2. Health Sciences Center, University of Virginia, Charlottesville, Virginia

Abstract

Insulin-mediated hemodynamic effects in muscle were assessed in relation to insulin resistance in obese and lean Zucker rats. Whole-body glucose infusion rate (GIR), femoral blood flow (FBF), hindleg glucose extraction (HGE), hindleg glucose uptake (HGU), 2-deoxyglucose (DG) uptake into muscles of the lower leg (Rg), and metabolism of infused 1-methylxanthine (1-MX) to measure capillary recruitment were determined for isogylcemic (4.8 ± 0.2 mmol/l, lean; 11.7 ± 0.6 mmol/l, obese) insulin-clamped (20 mU · min−1 · kg−1 × 2 h) and saline-infused control anesthetized age-matched (20 weeks) lean and obese animals. Obese rats (445 ± 5 g) were less responsive to insulin than lean animals (322 ± 4 g) for GIR (7.7 ± 1.4 vs. 22.2 ± 1.1 mg · min−1 · kg−1, respectively), and when compared with saline-infused controls there was no increase due to insulin by obese rats in FBF, HGE, HGU, and Rg of soleus, plantaris, red gastrocnemius, white gastrocnemius, extensor digitorum longus (EDL), or tibialis muscles. In contrast, lean animals showed marked increases due to insulin in FBF (5.3-fold), HGE (5-fold), HGU (8-fold), and Rg (∼5.6-fold). Basal (saline) hindleg 1-MX metabolism was 1.5-fold higher in lean than in obese Zucker rats, and insulin increased in only that of the lean. Hindleg 1-MX metabolism in the obese decreased slightly in response to insulin, thus postinsulin lean was 2.6-fold that of the postinsulin obese. We conclude that muscle insulin resistance of obese Zucker rats is accompanied by impaired hemodynamic responses to insulin, including capillary recruitment and FBF.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3