Target Cell Expression of Suppressor of Cytokine Signaling-1 Prevents Diabetes in the NOD Mouse

Author:

Flodström-Tullberg Malin1,Yadav Deepak1,Hägerkvist Robert2,Tsai Devin1,Secrest Patrick1,Stotland Alexandr1,Sarvetnick Nora1

Affiliation:

1. Department of Immunology, The Scripps Research Institute, La Jolla, California

2. Department of Medical Cell Biology, Biomedicum, Uppsala University, Uppsala, Sweden

Abstract

Although lymphocyte infiltration and islet destruction are hallmarks of diabetes, the mechanisms of β-cell destruction are not fully understood. One issue that remains unresolved is whether cytokines play a direct role in β-cell death. We investigated whether β-cell cytokine signaling contributes to autoimmune type 1 diabetes. We demonstrated that NOD mice harboring β-cells expressing the suppressor of cytokine signaling-1 (SOCS-1), an inhibitor of Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling, have a markedly reduced incidence of diabetes. Similar to their non-transgenic (Tg) littermates, SOCS-1-Tg mice develop insulitis and their splenocytes transfer disease to NODscid recipients. Disease protection correlates with suppression of cytokine-induced STAT-1 phosphorylation in SOCS-1–expressing β-cells and with a reduced sensitivity of these cells to destruction by diabetogenic cells in vivo. Interestingly, lymphocytes recruited to the pancreas of SOCS-1-Tg mice transferred diabetes to NODscid recipients with a reduced efficiency, suggesting that the pancreatic environment in SOCS-1-Tg mice does not support the maintenance of functionally differentiated T-cells. These results suggest that cytokines contribute to the development of type 1 diabetes by acting directly on the target β-cell. Importantly, given that the SOCS-1–expressing mouse maintain normal blood glucose levels throughout life, this study also showed that SOCS-1 expression by β-cells can represent a promising strategy to prevent type 1 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3