Caveolin-1 Expression Is Essential for Proper Nonshivering Thermogenesis in Brown Adipose Tissue

Author:

Cohen Alex W.12,Schubert William12,Brasaemle Dawn L.3,Scherer Philipp E.4,Lisanti Michael P.12

Affiliation:

1. Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York

2. Albert Einstein Cancer Center, Bronx, New York

3. Department of Nutritional Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey

4. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York

Abstract

Recently, we have shown that loss of caveolin-1 leads to marked alterations in insulin signaling and lipolysis in white adipose tissue. However, little is known about the role of caveolin-1 in brown adipose tissue (BAT), a tissue responsible for nonshivering thermogenesis. Here, we show that caveolin-1 null mice have a mildly, yet significantly, decreased resting core body temperature. To investigate this in detail, we next subjected the mice to fasting (for 24 h) or cold treatment (4°C for 24 h), individually or in combination. Interestingly, caveolin-1 null mice showed markedly decreased body temperatures in response to fasting or fasting/cold treatment; however, cold treatment alone had no effect. In addition, under these conditions caveolin-1 null mice failed to show the normal increase in serum nonesterified fatty acids induced by fasting or fasting/cold treatment, suggesting that these mice are unable to liberate triglyceride stores for heat production. In accordance with these results, the triglyceride content of BAT was reduced nearly 10-fold in wild-type mice after fasting/cold treatment, but it was reduced only 3-fold in caveolin-1 null mice. Finally, electron microscopy of adipose tissue revealed dramatic perturbations in the mitochondria of caveolin-1 null interscapular brown adipocytes. Taken together, our data provide the first molecular genetic evidence that caveolin-1 plays a critical functional and structural role in the modulation of thermogenesis via an effect on lipid mobilization.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3