Non-caveolar caveolins – duties outside the caves

Author:

Pol Albert123ORCID,Morales-Paytuví Frederic1,Bosch Marta12,Parton Robert G.45

Affiliation:

1. Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain

2. Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain

3. Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain

4. Institute for Molecular Bioscience (IMB), The University of Queensland (UQ), Brisbane, Queensland 4072, Australia

5. Centre for Microscopy and Microanalysis (CMM) IMB, The University of Queensland (UQ), Brisbane, Queensland 4072, Australia

Abstract

ABSTRACT Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3