Skeletal Muscle Microvascular Recruitment by Physiological Hyperinsulinemia Precedes Increases in Total Blood Flow

Author:

Vincent M.A.1,Dawson D.1,Clark A.D.H.2,Lindner J.R.1,Rattigan S.2,Clark M.G.2,Barrett E.J.1

Affiliation:

1. Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia

2. Division of Biochemistry, Medical School, University of Tasmania, Hobart, Australia

Abstract

Supraphysiological doses of insulin enhance total limb blood flow and recruit capillaries in skeletal muscle. Whether these processes change in response to physiological hyperinsulinemia is uncertain. To examine this, we infused either saline (n = 6) or insulin (euglycemic clamp, 3.0 mU · min−1 · kg−1, n = 9) into anesthetized rats for 120 min. Femoral artery flow was monitored continuously using a Doppler flow probe, and muscle microvascular recruitment was assessed by metabolism of infused 1-methylxanthine (1-MX) and by contrast-enhanced ultrasound (CEU). Insulin infusion raised plasma insulin concentrations by ∼10-fold. Compared with saline, physiological hyperinsulinemia increased femoral artery flow (1.02 ± 0.10 vs. 0.68 ± 0.09 ml/min; P < 0.05), microvascular recruitment (measured by 1-MX metabolism [6.6 ± 0.5 vs. 4.5 ± 0.48 nmol/min; P < 0.05] as well as by CEU [167.0 ± 39.8 vs. 28.2 ± 13.8%; P < 0.01]), and microvascular flow velocity (β, 0.14 ± 0.02 vs. 0.09 ± 0.02 s−1). Subsequently, we studied the time dependency of insulin’s vascular action in a second group (n = 5) of animals. Using CEU, microvascular volume was measured at 0, 30, and 90 min of insulin infusion. Insulin augmented microvascular perfusion within 30 min (52.8 ± 14.8%), and this persisted at 90 min (64.6 ± 9.9%). Microvascular recruitment occurred without changes to femoral artery flow or β. We conclude that insulin increases tissue perfusion by recruiting microvascular beds, and at physiological concentrations this precedes increases in total muscle blood flow by 60–90 min.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3