Affiliation:
1. Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia
2. Division of Biochemistry, Medical School, University of Tasmania, Hobart, Australia
Abstract
Supraphysiological doses of insulin enhance total limb blood flow and recruit capillaries in skeletal muscle. Whether these processes change in response to physiological hyperinsulinemia is uncertain. To examine this, we infused either saline (n = 6) or insulin (euglycemic clamp, 3.0 mU · min−1 · kg−1, n = 9) into anesthetized rats for 120 min. Femoral artery flow was monitored continuously using a Doppler flow probe, and muscle microvascular recruitment was assessed by metabolism of infused 1-methylxanthine (1-MX) and by contrast-enhanced ultrasound (CEU). Insulin infusion raised plasma insulin concentrations by ∼10-fold. Compared with saline, physiological hyperinsulinemia increased femoral artery flow (1.02 ± 0.10 vs. 0.68 ± 0.09 ml/min; P < 0.05), microvascular recruitment (measured by 1-MX metabolism [6.6 ± 0.5 vs. 4.5 ± 0.48 nmol/min; P < 0.05] as well as by CEU [167.0 ± 39.8 vs. 28.2 ± 13.8%; P < 0.01]), and microvascular flow velocity (β, 0.14 ± 0.02 vs. 0.09 ± 0.02 s−1). Subsequently, we studied the time dependency of insulin’s vascular action in a second group (n = 5) of animals. Using CEU, microvascular volume was measured at 0, 30, and 90 min of insulin infusion. Insulin augmented microvascular perfusion within 30 min (52.8 ± 14.8%), and this persisted at 90 min (64.6 ± 9.9%). Microvascular recruitment occurred without changes to femoral artery flow or β. We conclude that insulin increases tissue perfusion by recruiting microvascular beds, and at physiological concentrations this precedes increases in total muscle blood flow by 60–90 min.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
178 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献