Assessment of the Role of Interstitial Glucagon in the Acute Glucose Secretory Responsiveness of In Situ Pancreatic β-Cells

Author:

Moens Karen1,Berger Veerle1,Ahn Jung-Mo2,Van Schravendijk Chris1,Hruby Victor J.2,Pipeleers Daniel1,Schuit Frans1

Affiliation:

1. Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium

2. Department of Chemistry, University of Arizona, Tucson, Arizona

Abstract

Glucagon is a potent stimulator of insulin release in the presence of a permissive glucose concentration, activating β-cells in vitro via both glucagon- and glucagon-like peptide-1 (GLP-1)-receptors. It is still unclear whether locally released glucagon amplifies the secretory responsiveness of neighboring β-cells in the intact pancreas. The present study investigates this question in the perfused pancreas by examining the effects of antagonists for glucagon receptors ([des-His1,des-Phe6,Glu9]glucagon-NH2, 10 μmol/l) and GLP-1-receptors [exendin-(9-39)-NH2, 1 μmol/l] on the insulin secretory response to glucose. The specificity of both antagonists was demonstrated by their selective interaction with glucagon-receptor signaling in rat hepatocytes and GLP-1-receptor signaling in Chinese hamster lung (CHL) fibroblasts. In purified rat β-cells, the glucagon-receptor antagonist (10 μmol/l) inhibited the effect of 1 nmol/l glucagon upon glucose-induced insulin release by 78 ± 6%. In the perfused rat pancreas, neither of these antagonists inhibited the potent secretory response to 20 mmol/l glucose, although they effectively suppressed the potentiating effect of, respectively, an infusion of glucagon (1 nmol/l) or GLP-1 (1 nmol/l) on insulin release. When endogenous glucagon release was enhanced by isoproterenol (100 nmol/l), no amplification was seen in the simultaneous or subsequent insulin secretory response to glucose. It is concluded that, at least under the present selected conditions, the glucose-induced insulin release by the perfused rat pancreas seems to occur independent of an amplifying glucagon signal from neighboring α-cells.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3