Glucagon Acting at the GLP-1 Receptor Contributes to β-Cell Regeneration Induced by Glucagon Receptor Antagonism in Diabetic Mice

Author:

Wei Tianjiao1,Cui Xiaona1,Jiang Yafei1,Wang Kangli1,Wang Dandan1,Li Fei1,Lin Xiafang1,Gu Liangbiao1,Yang Kun1,Yang Jin12,Hong Tianpei12ORCID,Wei Rui12ORCID

Affiliation:

1. 1Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China

2. 2Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China

Abstract

Dysfunction of glucagon-secreting α-cells participates in the progression of diabetes, and glucagon receptor (GCGR) antagonism is regarded as a novel strategy for diabetes therapy. GCGR antagonism upregulates glucagon and glucagon-like peptide 1 (GLP-1) secretion and, notably, promotes β-cell regeneration in diabetic mice. Here, we aimed to clarify the role of GLP-1 receptor (GLP-1R) activated by glucagon and/or GLP-1 in the GCGR antagonism–induced β-cell regeneration. We showed that in db/db mice and type 1 diabetic wild-type or Flox/cre mice, GCGR monoclonal antibody (mAb) improved glucose control, upregulated plasma insulin level, and increased β-cell area. Notably, blockage of systemic or pancreatic GLP-1R signaling by exendin 9-39 (Ex9) or Glp1r knockout diminished the above effects of GCGR mAb. Furthermore, glucagon-neutralizing antibody (nAb), which prevents activation of GLP-1R by glucagon, also attenuated the GCGR mAb–induced insulinotropic effect and β-cell regeneration. In cultured primary mouse islets isolated from normal mice and db/db mice, GCGR mAb action to increase insulin release and to upregulate β-cell–specific marker expression was reduced by a glucagon nAb, by the GLP-1R antagonist Ex9, or by a pancreas-specific Glp1r knockout. These findings suggest that activation of GLP-1R by glucagon participates in β-cell regeneration induced by GCGR antagonism in diabetic mice. Article Highlights Glucagon receptor (GCGR) antagonism promotes β-cell regeneration in type 1 and type 2 diabetic mice and in euglycemic nonhuman primates. Glucagon and glucagon-like peptide 1 (GLP-1) can activate the GLP-1 receptor (GLP-1R), and their levels are upregulated following GCGR antagonism. We investigated whether GLP-1R activated by glucagon and/or GLP-1 contributed to β-cell regeneration induced by GCGR antagonism. We found that blockage of glucagon–GLP-1R signaling attenuated the GCGR monoclonal antibody–induced insulinotropic effect and β-cell regeneration in diabetic mice. Our study reveals a novel mechanism of β-cell regeneration and uncovers the communication between α-cells and β-cells in regulating β-cell mass.

Funder

Peking University Medicine Fund of Fostering Young Scholars’ Scientific & Technological Innovation

National Natural Science Foundation of China

Talent Project of Clinical Key Project of Peking University Third Hospital

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3