A Polymorphism in the TCF7 Gene, C883A, Is Associated With Type 1 Diabetes
Author:
Noble Janelle A.1, White Amy M.2, Lazzeroni Laura C.3, Valdes Ana M.2, Mirel Daniel B.2, Reynolds Rebecca2, Grupe Andrew4, Aud Dee5, Peltz Gary5, Erlich Henry A.2
Affiliation:
1. Children’s Hospital Oakland Research Institute, Oakland, California 2. Roche Molecular Systems, Alameda, California 3. Department of Health Research and Policy, Stanford University, Palo Alto, California 4. Celera Diagnostics, Alameda, CA 5. Roche Bioscience, Palo Alto, California
Abstract
Type 1 diabetes is an autoimmune disease with a Th1 phenotype in which insulin-producing β-cells in the pancreas are destroyed. The T-cell–specific transcription factor TCF7 activates genes involved in immune regulation and is a candidate locus for genetic susceptibility to type 1 diabetes. A nonsynonymous single nucleotide polymorphism (SNP) (Pro to Thr) in the TCF7 gene, C883A, was examined in samples from 282 Caucasian multiplex type 1 diabetic families. HLA-DRB1 and -DQB1 genotypes were previously determined for these samples, allowing data stratification based on HLA-associated risk. The transmission disequilibrium test showed significant overtransmission of the A allele from fathers (64.1%, P < 0.007) and nonsignificant overtransmission (57.4%, P < 0.06) of the A allele to patients who do not carry the highest-risk HLA-DR3/DR4 genotype. Elliptical sib pair analysis showed significant associations of the A allele with type 1 diabetes in paternal transmissions (P < 0.03), transmissions to male children (P < 0.04), and in the non-DR3/DR4 group (P < 0.04). These data also suggest that TCF7 C883A may affect age of disease onset. Analysis of genotype data from surrounding SNPs suggests that this TCF7 polymorphism may itself represent a risk factor for type 1 diabetes.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Reference12 articles.
1. Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA: The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 59:1134–1148,1996 2. Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE, Reed PW, Gough SC, Jenkins SC, Palmer SM, Balfour KM, Rowe BR, Farrall M, Barnett AH, Bain SC, Todd JA: A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371:130–136,1994 3. Concannon P, Gogolin-Ewens KJ, Hinds DA, Wapelhorst B, Morrison VA, Stirling B, Mitra M, Farmer J, Williams SR, Cox NJ, Bell GI, Risch N, Spielman RS: A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus [see comments]. Nat Genet 19:292–296,1998 4. Guler ML, Gorham JD, Dietrich WF, Murphy TL, Steen RG, Parvin CA, Fenoglio D, Grupe A, Peltz G, Murphy KM: Tpm1, a locus controlling IL-12 responsiveness, acts by a cell-autonomous mechanism. J Immunol 162:1339–1347,1999 5. Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg T, Clevers H: Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science 285:1923–1926,1999
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|