Polymorphic Susceptibility to the Molecular Causes of Neural Tube Defects During Diabetic Embryopathy

Author:

Pani Lydie12,Horal Melissa1,Loeken Mary R.12

Affiliation:

1. Section on Cellular and Molecular Physiology, Joslin Diabetes Center, Boston, Massachusetts

2. Department of Medicine, Harvard Medical School, Boston, Massachusetts

Abstract

Previously, we demonstrated that neural tube defects (NTDs) are significantly increased in a mouse model of diabetic pregnancy. In addition, expression of Pax-3, a gene encoding a transcription factor required for neural tube development, is significantly decreased. This suggests that diabetic embryopathy results from impaired expression of genes regulating essential morphogenetic processes. Here, we report that in one mouse strain, C57Bl/6J, embryos are resistant to the effects of maternal diabetes on NTDs and Pax-3 expression, in contrast to a susceptible strain, FVB, in which maternal diabetes significantly increases NTDs (P = 0.02) and inhibits Pax-3 expression (P = 0.01). Resistance to NTDs caused by diabetic pregnancy is a dominant trait, as demonstrated by heterozygous embryos of diabetic or nondiabetic mothers of either strain. There was no significant difference between strains in expression of genes that regulate free radical scavenging pathways, suggesting that susceptibility to oxidative stress does not account for the genetic differences. Understanding the genetic bases for differential susceptibility to altered gene expression and NTDs in diabetic mice may be important in delineating the mechanisms by which maternal hyperglycemia interferes with embryo gene expression. Moreover, if susceptibility to diabetic embryopathy is variable in humans as well as in mice, it may be possible to screen individuals at increased risk for this complication of diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3