Hyperglycemia Induces Monocytic Release of Interleukin-6 via Induction of Protein Kinase C-α and -β

Author:

Devaraj Sridevi1,Venugopal Senthil K.1,Singh Uma1,Jialal Ishwarlal1

Affiliation:

1. Laboratory for Atherosclerosis and Metabolic Research, Department of Pathology, University of California Davis Medical Center, Sacramento, California

Abstract

Diabetes confers an increased propensity to atherosclerosis. Inflammation is pivotal in atherogenesis, and diabetes is a proinflammatory state. Interleukin (IL)-6, in addition to inducing the acute-phase response, contributes to insulin resistance. Monocytes from type 2 diabetic patients secrete increased IL-6. The aim of this study was to examine molecular mechanisms for increased IL-6 release from monocytes under hyperglycemia. Monocytic cells (THP-1) were cultured in the presence of 5.5 mmol/l (normal) or 15 mmol/l (high) glucose and mannitol. Secreted IL-6, intracellular IL-6, and IL-6 mRNA were significantly increased with hyperglycemia (P < 0.001). Incubation of cells with inhibitors of reactive oxygen species failed to affect high-glucose–induced IL-6 release. Pan–protein kinase C (PKC) inhibitors significantly decreased high-glucose–induced IL-6 release. A specific inhibitor of p38 mitogen-activated protein kinase (MAPK; SB 202190), but not the extracellular signal–regulated kinase inhibitor PD98059, significantly decreased high-glucose–induced IL-6 release. Furthermore, the PKC-α/β2 inhibitor decreased p38MAPK and the resulting high-glucose–induced IL-6 release. Both antisense oligos to PKC-β and -α as well as small interfering RNA (siRNA) to PKC-α and -β resulted in significantly decreased high-glucose–induced IL-6 release. Nuclear factor-κB (NF-κB) inhibitors significantly decreased IL-6 mRNA and protein. siRNA to PKC-β and -α also significantly decreased NF-κB activity and IL-6 release. The combination was not additive to either siRNA alone, suggesting that they work through a common pathway. Thus, IL-6 release from monocytes under hyperglycemia appears to be mediated via upregulation of PKC, through p38MAPK and NF-κB, resulting in increased mRNA and protein for IL-6. Thus, inhibition of PKC-α and -β can ameliorate the proinflammatory state of diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3