Amplification of Insulin Secretion by Lipid Messengers

Author:

Turk John1,Gross Richard W1,Ramanadham Sasanka1

Affiliation:

1. Departments of Medicine and Pathology, Divisions of Laboratory Medicine and of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine St. Louis, Missouri

Abstract

D-glucose induces a rise in pancreatic islet β-cell cytosolic [Ca2+] by processes requiring both glucose metabolism and Ca2+ entry from the extracellular space, and this Ca2+ signal is thought to be critical to the induction of insulin secretion. Insulin secretagogues also induce phospholipid hydrolysis and accumulation of phospholipid-derived mediators in islets, including the lipid messengers DAG, nonesterified arachidonic acid, and arachidonate 12-LO products. This study offers the following viewpoints on potential roles of these lipid messengers in insulin secretion as working hypotheses: 1) the Ca2+ signal provided to the β-cell by D-glucose induces insulin secretion only in the context of amplifying background signals provided by the β-cell content of messengers including DAG; 2) muscarinic receptor agonists amplify glucose-induced insulin secretion in part by altering the β-cell content of DAG; 3) the Ca2+ signal provided by metabolism of D-glucose is amplified by the level of nonesterified arachidonic acid in β-cell membranes, which acts to facilitate Ca2+ entry; 4) metabolism of glucose induces accumulation of nonesterified arachidonate in beta-cells via activation of a recently identified ASCI-PLA2 enzyme, which may be a component of the β-cell fuel sensor apparatus; and 5) arachidonate 12-LO metabolites are potential candidates as adjunctive modulators of β-cell K+-channel activity.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3