The Regulation Network of Glycerolipid Metabolism as Coregulators of Immunotherapy-Related Myocarditis

Author:

Yang Xiguang12ORCID,Duan Xiaopeng2,Xia Zhenglin2,Huang Rui2,He Ke2ORCID,Xiang Guoan2ORCID

Affiliation:

1. Department of Gastrointestinal Surgery, Guigang City People’s Hospital, Guigang, Guangxi 537100, China

2. Department of General Surgery, Guangdong Provincial Second People’s Hospital, Guangzhou, Guangdong 510317, China

Abstract

Background. To date, immunotherapy for patients with malignant tumors has shown a significant association with myocarditis. However, the mechanism of metabolic reprogramming changes for immunotherapy-related cardiotoxicity is still not well understood. Methods. The CD45+ single-cell RNA sequencing (scRNA-seq) of the Pdcd1-/-Ctla4+/- and wild-type mouse heart in GSE213486 was downloaded to demonstrate the heterogeneity of immunocyte atlas in immunotherapy-related myocarditis. The liquid chromatography–tandem mass spectrometry (LC-MS/MS) spectrum metabolomics analysis detects the metabolic network differences. The drug prediction, organelle level interaction, mitochondrial level regulatory network, and phosphorylation site prediction for key regulators have also been screened via multibioinformatics analysis methods. Results. The scRNA analysis shows that the T cell is the main regulatory cell subpopulation in the pathological progress of immunotherapy-related myocarditis. Mitochondrial regulation pathway significantly participated in pseudotime trajectory- (PTT-) related differential expressed genes (DEGs) in the T cell subpopulation. Additionally, both the gene set enrichment analysis (GSEA) of PTT-related DEGs and LC-MS/MS metabolomics analysis showed that mitochondrial-regulated glycerolipid metabolism plays a central role in metabolic reprogramming changes for immunotherapy-related cardiotoxicity. Finally, the hub-regulated protease of diacylglycerol kinase zeta (Dgkz) was significantly identified and widely played various roles in glycerolipid metabolism, oxidative phosphorylation, and lipid kinase activation. Conclusion. Mitochondrial-regulated glycerolipid metabolism, especially the DGKZ protein, plays a key role in the metabolic reprogramming of immunotherapy-related myocarditis.

Funder

Guangdong Medical Research Foundation

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3