Enhanced Insulin Action Due to Targeted GLUT4 Overexpression Exclusively in Muscle

Author:

Tsao Tsu-Shuen1,Burcelin Rémy1,Katz Ellen B1,Huang Lily1,Charron Maureen J1

Affiliation:

1. Department of Biochemistry, Albert Einstein College of Medicine Bronx, New York

Abstract

Dysregulation of GLUT4, the insulin-responsive glucose transporter, is associated with insulin resistance in skeletal muscle. Although skeletal muscle is the major target of insulin action, muscle GLUT4 has not been linked causally to whole-body insulin sensitivity and regulation of glucose homeostasis. To address this, we generated a line of transgenic mice that overexpresses GLUT4 in skeletal muscle. We demonstrate that restricted overexpression of GLUT4 in fast-twitch skeletal muscles of myosin light chain (MLC)–GLUT4 transgenic mice induces a 2.5-fold increase in insulin-stimulated 2-deoxyglucose uptake in transgene-overexpressing cells. Consequently, glycogen content is increased in the fast-twitch skeletal muscles under insulin action (5.75 ± 1.02 vs. 3.24 ± 0.26 mg/g). This indicates that insulin-stimulated glucose transport is partly rate-limiting for glycogen synthesis. At the whole-body level, insulin-stimulated glucose turnover is increased 2.5-fold in unconscious MLC-GLUT4 mice. Plasma glucose and insulin levels in MLC-GLUT4 mice are altered as a result of increased insulin action. In 2- to 3-month-old MLC-GLUT4 mice, fasting insulin levels are decreased (0.43 ± 0.05 vs. 0.74 ± 0.10 microgram/l), whereas normal fasting glycemia is maintained. Conversely, 7- to 9-month-old MLC-GLUT4 mice exhibit decreased fasting glycemia (5.75 ± 0.73 vs. 8.11 ± 0.57 mmol/l) with normal insulin levels. Fasting plasma lactate levels are elevated in both age groups (50–100%). Additionally lipid metabolism is affected by skeletal muscle GLUT4 overexpression. This is indicated by changes in plasma free fatty acid and β-hydroxybutyrate levels. These studies underscore the importance of GLUT4 in the regulation of glucose homeostasis and its interaction with lipid metabolism.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3