Intact Regulation of the AMPK Signaling Network in Response to Exercise and Insulin in Skeletal Muscle of Male Patients With Type 2 Diabetes: Illumination of AMPK Activation in Recovery From Exercise

Author:

Kjøbsted Rasmus1,Pedersen Andreas J.T.2,Hingst Janne R.1,Sabaratnam Rugivan23,Birk Jesper B.1,Kristensen Jonas M.23,Højlund Kurt23,Wojtaszewski Jørgen F.P.1

Affiliation:

1. Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark

2. Department of Endocrinology, Odense University Hospital, Odense, Denmark

3. Section of Molecular Diabetes and Metabolism, Institute of Molecular Medicine and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark

Abstract

Current evidence on exercise-mediated AMPK regulation in skeletal muscle of patients with type 2 diabetes (T2D) is inconclusive. This may relate to inadequate segregation of trimeric complexes in the investigation of AMPK activity. We examined the regulation of AMPK and downstream targets ACC-β, TBC1D1, and TBC1D4 in muscle biopsy specimens obtained from 13 overweight/obese patients with T2D and 14 weight-matched male control subjects before, immediately after, and 3 h after exercise. Exercise increased AMPK α2β2γ3 activity and phosphorylation of ACCβ Ser221, TBC1D1 Ser237/Thr596, and TBC1D4 Ser704. Conversely, exercise decreased AMPK α1β2γ1 activity and TBC1D4 Ser318/Thr642 phosphorylation. Interestingly, compared with preexercise, 3 h into exercise recovery, AMPK α2β2γ1 and α1β2γ1 activity were increased concomitant with increased TBC1D4 Ser318/Ser341/Ser704 phosphorylation. No differences in these responses were observed between patients with T2D and control subjects. Subjects were also studied by euglycemic-hyperinsulinemic clamps performed at rest and 3 h after exercise. We found no evidence for insulin to regulate AMPK activity. Thus, AMPK signaling is not compromised in muscle of patients with T2D during exercise and insulin stimulation. Our results reveal a hitherto unrecognized activation of specific AMPK complexes in exercise recovery. We hypothesize that the differential regulation of AMPK complexes plays an important role for muscle metabolism and adaptations to exercise.

Funder

Danish Council for Independent Research Medical Sciences

The Novo Nordisk Foundation

The European Foundation for the Study of Diabetes

The Danish Diabetes Academy supported by the Novo Nordisk Foundation

the research program “Physical Activity and Nutrition for Improvement of Health” funded by the University of Copenhagen Excellence Programme for Interdisciplinary Research

Odense University Hospital

The European Foundation for the Study of Diabetes (EFSD)

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3