Nox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction

Author:

Sukumar Piruthivi1,Viswambharan Hema1,Imrie Helen1,Cubbon Richard M.1,Yuldasheva Nadira1,Gage Matthew1,Galloway Stacey1,Skromna Anna1,Kandavelu Parkavi1,Santos Celio X.2,Gatenby V. Kate1,Smith Jessica1,Beech David J.1,Wheatcroft Stephen B.1,Channon Keith M.3,Shah Ajay M.2,Kearney Mark T.1

Affiliation:

1. Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K.

2. Kings College London British Heart Foundation Centre of Excellence, London, U.K.

3. University of Oxford British Heart Foundation Centre of Excellence, Oxford, U.K.

Abstract

Insulin resistance is characterized by excessive endothelial cell generation of potentially cytotoxic concentrations of reactive oxygen species. We examined the role of NADPH oxidase (Nox) and specifically Nox2 isoform in superoxide generation in two complementary in vivo models of human insulin resistance (endothelial specific and whole body). Using three complementary methods to measure superoxide, we demonstrated higher levels of superoxide in insulin-resistant endothelial cells, which could be pharmacologically inhibited both acutely and chronically, using the Nox inhibitor gp91ds-tat. Similarly, insulin resistance–induced impairment of endothelial-mediated vasorelaxation could also be reversed using gp91ds-tat. siRNA-mediated knockdown of Nox2, which was specifically elevated in insulin-resistant endothelial cells, significantly reduced superoxide levels. Double transgenic mice with endothelial-specific insulin resistance and deletion of Nox2 showed reduced superoxide production and improved vascular function. This study identifies Nox2 as the central molecule in insulin resistance–mediated oxidative stress and vascular dysfunction. It also establishes pharmacological inhibition of Nox2 as a novel therapeutic target in insulin resistance–related vascular disease.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3