Abstract
AbstractType 2 diabetes is characterised by the disruption of insulin and insulin-like growth factor (IGF) signalling. The key hubs of these signalling cascades - the Insulin receptor (IR) and Insulin-like growth factor 1 receptor (IGF1R) – are known to form functional IR-IGF1R hybrid receptors which are insulin resistant. However, the mechanisms underpinning IR-IGF1R hybrid formation are not fully understood, hindering the ability to modulate this for future therapies targeting this receptor. To pinpoint suitable sites for intervention, computational hotspot prediction was utilised to identify promising epitopes for targeting with point mutagenesis. Specific IGF1R point mutations F450A, R391A and D555A show reduced affinity of the hybrid receptor in a BRET based donor-saturation assay, confirming hybrid formation could be modulated at this interface. These data provide the basis for rational design of more effective hybrid receptor modulators, supporting the prospect of identifying a small molecule that specifically interacts with this target.
Publisher
Cold Spring Harbor Laboratory