Influence of Hyperinsulinemia and Insulin Resistance on In Vivo β-Cell Function

Author:

Mari Andrea1,Tura Andrea1,Natali Andrea2,Anderwald Christian13,Balkau Beverley4,Lalic Nebojsa5,Walker Mark6,Ferrannini Ele2,

Affiliation:

1. National Research Council Institute of Biomedical Engineering, Padova, Italy

2. Department of Internal Medicine, University of Pisa, Pisa, Italy

3. Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria

4. INSERM U258, Villejuif, France

5. Clinical Center of Serbia, Institute for Endocrinology, Diabetes and Metabolic Diseases, Belgrade, Serbia

6. Department of Medicine, University of Newcastle upon Tyne, Newcastle upon Tyne, U.K.

Abstract

OBJECTIVE Recent work has shown that insulin stimulates its own secretion in insulin-sensitive humans, suggesting that insulin resistance in the β-cell could cause β-cell dysfunction. We have tested whether insulin exposure and insulin sensitivity modulate β-cell function in subjects with normal glucose tolerance (NGT) and whether they contribute to dysglycemia in impaired glucose regulation (IGR). RESEARCH DESIGN AND METHODS Insulin sensitivity (by euglycemic clamp), insulin-induced secretory response at isoglycemia (IISR) (as C-peptide percent change from basal during the clamp), glucose-induced secretory response (GISR) to an intravenous glucose bolus, and β-cell glucose sensitivity (β-GS) (by oral glucose tolerance test [OGTT] modeling) were measured in 1,151 NGT and 163 IGR subjects from the RISC (Relationship between Insulin Sensitivity and Cardiovascular Disease) study. RESULTS In NGT, IISR was related to both insulin sensitivity and antecedent insulin exposure; GISR was related to insulin exposure. IISR was positively, if weakly, related to β-GS (r= 0.16, P < 0.0001). Both IISR (−23 [39] vs. −9 [2]%, median [interquartile range], P < 0.03) and β-GS (69 [47] vs. 118 [83] pmol ⋅ min–1 ⋅ m–2 ⋅ mmol–1 ⋅ L, P < 0.0001) were decreased in IGR compared with NGT. Insulin sensitivity and β-GS were the major determinants of mean OGTT glucose in both NGT and IGR, with a minor role for IISR. In a multivariate logistic model, IGR was predicted by β-GS (odds ratio 4.84 [95% CI 2.89–8.09]) and insulin sensitivity (3.06 [2.19–4.27]) but not by IISR (1.11 [0.77–1.61]). CONCLUSIONS Pre-exposure to physiological hyperinsulinemia stimulates insulin secretion to a degree that depends on insulin sensitivity. However, this phenomenon has limited impact on β-cell dysfunction and dysglycemia.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3