Generation of Nicotinic Acid Adenine Dinucleotide Phosphate and Cyclic ADP-Ribose by Glucagon-Like Peptide-1 Evokes Ca2+ Signal That Is Essential for Insulin Secretion in Mouse Pancreatic Islets

Author:

Kim Byung-Ju1,Park Kwang-Hyun1,Yim Chang-Yeol2,Takasawa Shin3,Okamoto Hiroshi3,Im Mie-Jae1,Kim Uh-Hyun14

Affiliation:

1. Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Republic of Korea

2. Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea

3. Department of Advanced Biological Sciences for Regeneration, Tohoku University Graduate School of Medicine, Sendai, Japan

4. Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, Republic of Korea

Abstract

OBJECTIVE—Glucagon-like peptide-1 (GLP-1) increases intracellular Ca2+ concentrations ([Ca2+]i), resulting in insulin secretion from pancreatic β-cells. The molecular mechanism(s) of the GLP-1–mediated regulation of [Ca2+]i was investigated. RESEARCH DESIGN AND METHODS—GLP-1–induced changes in [Ca2+]i were measured in β-cells isolated from Cd38+/+ and Cd38−/− mice. Calcium-mobilizing second messengers were identified by measuring levels of nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (ADPR), using a cyclic enzymatic assay. To locate NAADP- and cyclic ADPR–producing enzyme(s), cellular organelles were separated using the sucrose gradient method. RESULTS—A GLP-1–induced [Ca2+]i increase showed a cooperative Ca2+ signal, i.e., an initial [Ca2+]i rise mediated by the action of NAADP that was produced in acidic organelles and a subsequent long-lasting increase of [Ca2+]i by the action of cyclic ADPR that was produced in plasma membranes and secretory granules. GLP-1 sequentially stimulated production of NAADP and cyclic ADPR in the organelles through protein kinase A and cAMP-regulated guanine nucleotide exchange factor II. Furthermore, the results showed that NAADP production from acidic organelles governed overall Ca2+ signals, including insulin secretion by GLP-1, and that in addition to CD38, enzymes capable of synthesizing NAADP and/or cyclic ADPR were present in β-cells. These observations were supported by the study with Cd38−/− β-cells, demonstrating production of NAADP, cyclic ADPR, and Ca2+ signal with normal insulin secretion stimulated by GLP-1. CONCLUSIONS—Our findings demonstrate that the GLP-1–mediated Ca2+ signal for insulin secretion in pancreatic β-cells is a cooperative action of NAADP and cyclic ADPR spatiotemporally formed by multiple enzymes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3