Lipoic Acid Improves Nerve Blood Flow, Reduces Oxidative Stress, and Improves Distal Nerve Conduction in Experimental Diabetic Neuropathy

Author:

Nagamatsu Masaaki1,Nickander Kim K1,Schmelzer James D1,Raya Angel2,Wittrock Debra A1,Tritschler Hans3,Low Phillip A1

Affiliation:

1. Neurophysiology Laboratory, Department of Neurology Mayo Foundation, Rochester, Minnesota

2. Experimental Toxicology and Neurotoxicology Unit, Department of Physiology, School of Medicine and Dentistry, University of Valencia Valencia, Spain

3. ASTA Medica Frankfurt, Germany

Abstract

OBJECTIVE To determine whether lipoic acid (LA) will reduce oxidative stress in diabetic peripheral nerves and improve neuropathy. RESEARCH DESIGN AND METHODS We used the model of streptozotocin-induced diabetic neuropathy (SDN) and evaluated the efficacy of LA supplementation in improving nerve blood flow (NBF), electrophysiology, and indexes of oxidative stress in peripheral nerves affected by SDN, at 1 month after onset of diabetes and in age-matched control rats. LA, in doses of 20, 50, and 100 mg/kg, was administered intraperitoneally five times per week after onset of diabetes. RESULTS NBF in SDN was reduced by 50% LA did not affect the NBF of normal nerves but improved that of SDN in a dose-dependent manner. After 1 month of treatment, LA-supplemented rats (100 mg/kg) exhibited normal NBF. The most sensitive and reliable indicator of oxidative stress was reduction in reduced glutathione, which was significantly reduced in streptozotocin-induced diabetic and alpha-tocopherol-deficient nerves; it was improved in a dose-dependent manner in LA-supplemented rats. The conduction velocity of the digital nerve was reduced in SDN and was significantly improved by LA. CONCLUSIONS These studies suggest that LA improves SDN, in significant part by reducing the effects of oxidative stress. The drug may have potential in the treatment of human diabetic neuropathy.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 340 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3