Heme Oxygenase-1 Regulates Ferrous Iron and Foxo1 in Control of Hepatic Gluconeogenesis

Author:

Liao Wang1,Yang Wanbao1,Shen Zheng1,Ai Weiqi1,Pan Quan1,Sun Yuxiang1,Guo Shaodong1ORCID

Affiliation:

1. Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX

Abstract

The liver is a key player for maintaining glucose homeostasis. Excessive hepatic glucose production is considered to be a key for the onset of type 2 diabetes. The primary function of heme oxygenase-1 (HO1) is to catalyze the degradation of heme into biliverdin, ferrous iron, and carbon monoxide. Previous studies have demonstrated that the degradation of heme by HO1 in the liver results in mitochondrial dysfunction and drives insulin resistance. In this study, by overexpressing HO1 in hepatocytes and mice, we showed that HO1 promotes gluconeogenesis in a Foxo1-dependent manner. Importantly, HO1 overexpression increased the generation of ferrous iron in the liver, which further activates nuclear factor-κB and phosphorylates Foxo1 at Ser273 to enhance gluconeogenesis. We further assessed the role of HO1 in insulin-resistant liver-specific knockout of IRS1 and IRS2 genes (L-DKO) mice, which exhibit upregulation of HO1 in the liver and hepatic ferrous iron overload. HO1 knockdown by shRNA or treatment of iron chelator rescued the aberrant gluconeogenesis in L-DKO mice. In addition, we found that systemic iron overload promotes gluconeogenesis by activating the hepatic protein kinase A→Foxo1 axis. Thus, our results demonstrate the role of HO1 in regulating hepatic iron status and Foxo1 to control gluconeogenesis and blood glucose.

Funder

National Institutes of Health

American Diabetes Association

Texas A&M University Health Science Center and AgriLife Research

U.S. Department of Agriculture National Institute of Food and Agriculture

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3