Effect of Exenatide, Sitagliptin, or Glimepiride on β-Cell Secretory Capacity in Early Type 2 Diabetes

Author:

Gudipaty Lalitha1,Rosenfeld Nora K.1,Fuller Carissa S.1,Gallop Robert2,Schutta Mark H.1,Rickels Michael R.1

Affiliation:

1. Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA

2. Department of Mathematics, West Chester University of Pennsylvania, West Chester, PA

Abstract

OBJECTIVE Agents that augment GLP-1 effects enhance glucose-dependent β-cell insulin production and secretion and thus are hoped to prevent progressive impairment in insulin secretion characteristic of type 2 diabetes (T2D). The purpose of this study was to evaluate GLP-1 effects on β-cell secretory capacity, an in vivo measure of functional β-cell mass, early in the course of T2D. RESEARCH DESIGN AND METHODS We conducted a randomized controlled trial in 40 subjects with early T2D who received the GLP-1 analog exenatide (n = 14), the dipeptidyl peptidase IV inhibitor sitagliptin (n = 12), or the sulfonylurea glimepiride (n = 14) as an active comparator insulin secretagogue for 6 months. Acute insulin responses to arginine (AIRarg) were measured at baseline and after 6 months of treatment with 5 days of drug washout under fasting, 230 mg/dL (glucose potentiation of arginine-induced insulin release [AIRpot]), and 340 mg/dL (maximum arginine-induced insulin release [AIRmax]) hyperglycemic clamp conditions, in which AIRmax provides the β-cell secretory capacity. RESULTS The change in AIRpot was significantly greater with glimepiride versus exenatide treatment (P < 0.05), and a similar trend was notable for the change in AIRmax (P = 0.1). Within each group, the primary outcome measure, AIRmax, was unchanged after 6 months of treatment with exenatide or sitagliptin compared with baseline but was increased with glimepiride (P < 0.05). α-Cell glucagon secretion (AGRmin) was also increased with glimepiride treatment (P < 0.05), and the change in AGRmin trended higher with glimepiride than with exenatide (P = 0.06). CONCLUSIONS After 6 months of treatment, exenatide or sitagliptin had no significant effect on functional β-cell mass as measured by β-cell secretory capacity, whereas glimepiride appeared to enhance β- and α-cell secretion.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference39 articles.

1. Clinical review 135: The importance of beta-cell failure in the development and progression of type 2 diabetes;Kahn;J Clin Endocrinol Metab,2001

2. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes;Butler;Diabetes,2003

3. Autophagy and the pancreatic beta-cell in human type 2 diabetes;Marchetti;Autophagy,2009

4. Autophagy in human type 2 diabetes pancreatic beta cells;Masini;Diabetologia,2009

5. An examination of beta-cell function measures and their potential use for estimating beta-cell mass;Kahn;Diabetes Obes Metab,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3