Improved Insulin Sensitivity by GLUT12 Overexpression in Mice

Author:

Purcell Scott H.1,Aerni-Flessner Lauren B.1,Willcockson Alexandra R.1,Diggs-Andrews Kelly A.2,Fisher Simon J.2,Moley Kelle H.1

Affiliation:

1. Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri

2. Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri

Abstract

OBJECTIVE Evidence suggests that insulin-sensitive glucose transporters (GLUTs) other than GLUT4 may exist. To investigate whether GLUT12 may represent another insulin-sensitive GLUT, transgenic (TG) mice that overexpress GLUT12 were characterized. RESEARCH DESIGN AND METHODS TG mice that overexpressed GLUT12 under a β-actin promoter were generated. Glucose metabolism in TG and wild-type control mice was compared using glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamps. In addition, basal and insulin-stimulated glucose clearance rates into insulin-sensitive peripheral tissues were measured using [3H]-2-deoxy-d-glucose. RESULTS GLUT12 was overexpressed by 40–75% in TG compared with wild-type mice in insulin-sensitive tissues with no change in GLUT4 content. Body weight and fasting blood glucose did not differ between wild-type and TG mice; however, insulin concentrations were reduced in TG mice. Enhanced oral glucose tolerance was noted in TG mice by a reduced blood glucose excursion compared with wild-type mice (P < 0.05). Enhanced insulin sensitivity was noted by a greater decrease in blood glucose in TG mice during insulin tolerance testing. Hyperinsulinemic-euglycemic clamps confirmed enhanced insulin sensitivity in GLUT12-overexpressing mice (P < 0.01). Tissues of TG mice exhibited normal basal glucose clearance rates; however, under insulin-stimulated conditions, glucose clearance was significantly increased (P < 0.01) in tissues of TG mice. CONCLUSIONS Increased expression of GLUT12 results in improved whole-body insulin sensitivity mediated by an increased glucose clearance rate in insulin-responsive tissues under insulin-stimulated, but not basal, conditions. These findings provide evidence that GLUT12 represents a novel, second insulin-sensitive GLUT.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3