A Latent Class Analysis Approach to Challenges Experienced by Faculty Members in Online Assessment in Higher Education

Author:

Gül Emrah1ORCID

Affiliation:

1. HAKKARİ ÜNİVERSİTESİ

Abstract

Online assessment is the use of computer technologies by faculty members to guide and check learning. Taking the advantage of technology, many universities have used online assessment applications to ensure sustainability in education due to the pandemic and natural disasters. The purpose of the current study is to explore challenges experienced by faculty members in online assessment, using latent class analysis. The descriptive design research was carried out with the participation of 105 faculty members. For the study, the number of latent classes was decided according to the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) and it was observed that the data structure was a good fit for a two-class model. According to the research results, the first class in online assessment applications was considered as the with-difficulty group (58.7 %) and the second as the without-difficulty group (41.3 %). When the conditional probabilities were examined, it was concluded that the observed variables that mostly contributed to the two-class model data structure were as follows, cheating, plagiarism and lack of education policies. It was found that the primary challenges in both groups (with or without difficulty) in online assessment applications were cheating, plagiarism and lack of education policies.

Funder

Not applicable

Publisher

Erzincan University Journal of Education Faculty

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3