Genetic determination of drought resistance in common wheat (Triticum aestivum L.)

Author:

Sidorenko M. V.,Chebotar S. V.

Abstract

The aim of the work is to analyze the literature data on genetic determinants and molecular mechanisms involved in the regulation of adaptation and resistance to drought in common wheat. Results. Regulation of the response to osmotic stress in common wheat is carried out through several abscisic acid-dependent or independent pathways. ABA inhibits the growth processes of aerial parts of the plant by inhibiting the action of auxins and cytokinins, increases the hydraulic conductivity of roots by modulating the activity of aquaporins - membrane water channels, changes the flow of ions in the closing cells of the stomata, which leads to their closure and a decrease in water consumption for transpiration. ABA activates a number of TFs that regulate the expression of genes, the products of which are necessary to eliminate the negative consequences of water deficit. ABA-dependent is activation of the genes of antioxidant defense enzymes - superoxide dismutase, peroxidase, catalase and enzymes of the ascorbate-glutathione cycle. Activators of their transcription are NAC, MYB, WRKY, NF-Y, ZFHD and TaERF3 TFs. Expression of LEA genes and dehydrins, which prevent protein aggregation due to dehydration, is ensured by both ABA-dependent and -independent signal transduction pathways, with the help of AREB/ABF, NAC, MYB, WRKY, AP2/EREBP and ZFHD TFs. ABA also activates the biosynthesis of proline - one of the main low-molecular osmoprotectants that accumulate in the cell and ensure the stability of its water regime. Osmolyte accumulation is regulated by MYB, WRKY, NF-Y and TaERF3 TFs. Conclusions. Thus, in the article is considered the regulatory role of ABA in the formation of drought resistance through molecular interactions involving aquaporins, dehydrins, SNRK2 protein kinases, LEA proteins and their genes, as well as genes of transcription factors NAC, MYB, WRKY, NF-Y, AP/ EREBP, ZFHD, DREB. However, due to the complexity of the wheat genome and the polygenicity of the drought resistance trait, there is currently no line of molecular genetic markers for certain alleles of drought resistance genes that would allow predicting the drought resistance of Ukrainian breeding varieties. The molecular genetic mechanisms underlying drought resistance and the identification of genes with the greatest phenotypic effect, as well as the modeling of the work of these genes at different stages of ontogenesis and the involvement of drought resistance alleles in breeding programs, currently require further research.

Publisher

Institute of Molecular Biology and Genetics (NAS Ukraine)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3