Preliminary estimates of the number and diversity of the culturable endophytic bacteria from Deschampsia antarctica and Colobanthus quitensis

Author:

Prekrasna IE,Dzhulai A.,Parnikoza I.

Abstract

Endophytes are able to promote the plant's growth and are essential for their hosts to overcome biotic and abiotic stress. Plant-promoting capacities of these microorganisms can be crucial for Antarctic plants. The aim of the study was to estimate the number and diversity of culturable endophytic microorganisms from Deschampsia antarctica and Colobanthus quitensis growing in different localities of the West Antarctic Peninsula. Methods. Serial dilutions of the surface-sterilized plant biomass were inoculated on the CASO (Merk, USA) and R2A (Merk, USA) media and cultured at room temperature for a week. Number of colonies and their morphotypes were estimated. Results. The number of colony-forming units in the aboveground part and roots of D. antarctica was 4×106 ±2×106 and 7×106 ±2×106 per g of biomass, respectively. The colony forming units CFU number in the aboveground part of C. quitensis was 3×106±1×106 per g of biomass. The highest number of CFU was in the roots of D. antarctica from Galindez Island on both media (n×107). The highest CFU number in C. quitensis was in plants from Deception Island on nutrient-poor (7×106) and -rich (1×107) media. The lowest value was found for C. quitensis from Cape Pérez (7×103 on R2A and 1×104 on CASO). There was no significant difference in the number of CFU grown on nutrient-poor and nutrient-rich medium, but the morphology of the CFU varied on the two media. 112 pure cultures of endophytes were isolated. The vast majority (78%) of the isolates were gram-negative rods. The number of cultured endophytes of Antarctic vascular plans varied across the samples, which can be affected both by the features of the individual plants and the ecology of sites where they grow. Bacterial communities did not significantly vary in number depending on the medium but did somewhat differ in morphology. A collection of 112 endophyte isolates was developed, which is important to study their genetic and physiological traits and mechanisms of plant-bacteria interaction. Conclusions. Isolation of the endophytic microorganisms is important to study their genetic and physiological traits and mechanisms of plant-bacteria interaction.Keywords: Antarctic hairgrass, Antarctic pearlwort, maritime Antarctica, symbionts of plants

Publisher

Institute of Molecular Biology and Genetics (NAS Ukraine)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3