Duplicate Question Identification by Integrating FrameNet With Neural Networks

Author:

Zhang Xiaodong,Sun Xu,Wang Houfeng

Abstract

There are two major problems in duplicate question identification, namely lexical gap and essential constituents matching. Previous methods either design various similarity features or learn representations via neural networks, which try to solve the lexical gap but neglect the essential constituents matching. In this paper, we focus on the essential constituents matching problem and use FrameNet-style semantic parsing to tackle it. Two approaches are proposed to integrate FrameNet parsing with neural networks. An ensemble approach combines a traditional model with manually designed features and a neural network model. An embedding approach converts frame parses to embeddings, which are combined with word embeddings at the input of neural networks. Experiments on Quora question pairs dataset demonstrate that the ensemble approach is more effective and outperforms all baselines.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assembled LSTM Technique Used for Phonetic-Based Algorithm for Demographical Data;Proceedings of the NIELIT's International Conference on Communication, Electronics and Digital Technology;2023

2. VSCA: A Sentence Matching Model Incorporating Visual Perception;Cognitive Computation;2022-12-08

3. Quora Question Pairs Identification and Insincere Questions Classification;2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT);2022-10-03

4. BMCSA:Multi-feature spatial convolution semantic matching model based on BERT;Journal of Intelligent & Fuzzy Systems;2022-08-10

5. A joint FrameNet and element focusing Sentence-BERT method of sentence similarity computation;Expert Systems with Applications;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3