SELF: Structural Equational Likelihood Framework for Causal Discovery

Author:

Cai Ruichu,Qiao Jie,Zhang Zhenjie,Hao Zhifeng

Abstract

Causal discovery without intervention is well recognized as a challenging yet powerful data analysis tool, boosting the development of other scientific areas, such as biology, astronomy, and social science. The major technical difficulty behind the observation-based causal discovery is to effectively and efficiently identify causes and effects from correlated variables given the existence of significant noises. Previous studies mostly employ two very different methodologies under Bayesian network framework, namely global likelihood maximization and locally complexity analysis over marginal distributions. While these approaches are effective in their respective problem domains, in this paper, we show that they can be combined to formulate a new global optimization model with local statistical significance, called structural equational likelihood framework (or SELF in short). We provide thorough analysis on the soundness of the model under mild conditions and present efficient heuristic-based algorithms for scalable model training. Empirical evaluations using XGBoost validate the superiority of our proposal over state-of-the-art solutions, on both synthetic and real world causal structures.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3