Privacy Preserving Point-of-Interest Recommendation Using Decentralized Matrix Factorization

Author:

Chen Chaochao,Liu Ziqi,Zhao Peilin,Zhou Jun,Li Xiaolong

Abstract

Points of interest (POI) recommendation has been drawn much attention recently due to the increasing popularity of location-based networks, e.g., Foursquare and Yelp. Among the existing approaches to POI recommendation, Matrix Factorization (MF) based techniques have proven to be effective. However, existing MF approaches suffer from two major problems: (1) Expensive computations and storages due to the centralized model training mechanism: the centralized learners have to maintain the whole user-item rating matrix, and potentially huge low rank matrices. (2) Privacy issues: the users' preferences are at risk of leaking to malicious attackers via the centralized learner. To solve these, we present a Decentralized MF (DMF) framework for POI recommendation. Specifically, instead of maintaining all the low rank matrices and sensitive rating data for training, we propose a random walk based decentralized training technique to train MF models on each user's end, e.g., cell phone and Pad. By doing so, the ratings of each user are still kept on one's own hand, and moreover, decentralized learning can be taken as distributed learning with multi-learners (users), and thus alleviates the computation and storage issue. Experimental results on two real-world datasets demonstrate that, comparing with the classic and state-of-the-art latent factor models, DMF significantly improvements the recommendation performance in terms of precision and recall.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient and adaptive secure cross-domain recommendations;Expert Systems with Applications;2024-12

2. Broad Recommender System: An Efficient Nonlinear Collaborative Filtering Approach;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-08

3. Decentralized Federated Recommendation with Privacy-aware Structured Client-level Graph;ACM Transactions on Intelligent Systems and Technology;2024-07-29

4. Poisoning Decentralized Collaborative Recommender System and Its Countermeasures;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

5. Fair and Robust Federated Learning via Decentralized and Adaptive Aggregation based on Blockchain;ACM Transactions on Sensor Networks;2024-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3