Neural Link Prediction over Aligned Networks

Author:

Cao Xuezhi,Chen Haokun,Wang Xuejian,Zhang Weinan,Yu Yong

Abstract

Link prediction is a fundamental problem with a wide range of applications in various domains, which predicts the links that are not yet observed or the links that may appear in the future. Most existing works in this field only focus on modeling a single network, while real-world networks are actually aligned with each other. Network alignments contain valuable additional information for understanding the networks, and provide a new direction for addressing data insufficiency and alleviating cold start problem. However, there are rare works leveraging network alignments for better link prediction. Besides, neural network is widely employed in various domains while its capability of capturing high-level patterns and correlations for link prediction problem has not been adequately researched yet. Hence, in this paper we target atlink prediction over aligned networks using neural networks. The major challenge is the heterogeneousness of the considered networks, as the networks may have different characteristics, link purposes, etc. To overcome this, we propose a novel multi-neural-network framework MNN, where we have one individual neural network for each heterogeneous target or feature while the vertex representations are shared. We further discuss training methods for the multi-neural-network framework. Extensive experiments demonstrate that MNN outperforms the state-of-the-art methods and achieves 3% to 5% relative improvement of AUC score across different settings, particularly over 8% for cold start scenarios.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3