Author:
Fu Zhenxin,Tan Xiaoye,Peng Nanyun,Zhao Dongyan,Yan Rui
Abstract
The ability to transfer styles of texts or images, is an important measurement of the advancement of artificial intelligence (AI). However, the progress in language style transfer is lagged behind other domains, such as computer vision, mainly because of the lack of parallel data and reliable evaluation metrics. In response to the challenge of lacking parallel data, we explore learning style transfer from non-parallel data. We propose two models to achieve this goal. The key idea behind the proposed models is to learn separate content representations and style representations using adversarial networks. Considering the problem of lacking principle evaluation metrics, we propose two novel evaluation metrics that measure two aspects of style transfer: transfer strength and content preservation. We benchmark our models and the evaluation metrics on two style transfer tasks: paper-news title transfer, and positive-negative review transfer. Results show that the proposed content preservation metric is highly correlate to human judgments, and the proposed models are able to generate sentences with similar content preservation score but higher style transfer strength comparing to auto-encoder.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献