Author:
Zheng Nenggan,Wen Jun,Liu Risheng,Long Liangqu,Dai Jianhua,Gong Zhefeng
Abstract
In recent years, skeleton based action recognition is becoming an increasingly attractive alternative to existing video-based approaches, beneficial from its robust and comprehensive 3D information. In this paper, we explore an unsupervised representation learning approach for the first time to capture the long-term global motion dynamics in skeleton sequences. We design a conditional skeleton inpainting architecture for learning a fixed-dimensional representation, guided by additional adversarial training strategies. We quantitatively evaluate the effectiveness of our learning approach on three well-established action recognition datasets. Experimental results show that our learned representation is discriminative for classifying actions and can substantially reduce the sequence inpainting errors.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献