Budget-Constrained Multi-Armed Bandits With Multiple Plays

Author:

Zhou Datong,Tomlin Claire

Abstract

We study the multi-armed bandit problem with multiple plays and a budget constraint for both the stochastic and the adversarial setting. At each round, exactly K out of N possible arms have to be played (with 1 ≤ K <= N). In addition to observing the individual rewards for each arm played, the player also learns a vector of costs which has to be covered with an a-priori defined budget B. The game ends when the sum of current costs associated with the played arms exceeds the remaining budget. Firstly, we analyze this setting for the stochastic case, for which we assume each arm to have an underlying cost and reward distribution with support [cmin, 1] and [0, 1], respectively. We derive an Upper Confidence Bound (UCB) algorithm which achieves O(NK4 log B) regret. Secondly, for the adversarial case in which the entire sequence of rewards and costs is fixed in advance, we derive an upper bound on the regret of order O(√NB log(N/K)) utilizing an extension of the well-known Exp3 algorithm. We also provide upper bounds that hold with high probability and a lower bound of order Ω((1 – K/N) √NB/K).

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Client selection for federated learning using combinatorial multi-armed bandit under long-term energy constraint;Computer Networks;2024-08

2. Combinatorial Incentive Mechanism for Bundling Spatial Crowdsourcing with Unknown Utilities;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

3. Incentive-driven long-term optimization for hierarchical federated learning;Computer Networks;2023-10

4. You Can Trade Your Experience in Distributed Multi-Agent Multi-Armed Bandits;2023 IEEE/ACM 31st International Symposium on Quality of Service (IWQoS);2023-06-19

5. Multi-armed Bandit with Time-variant Budgets;2023 4th International Conference on Computer Engineering and Application (ICCEA);2023-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3