Author:
Luo Shirui,Zhang Changqing,Zhang Wei,Cao Xiaochun
Abstract
Multi-view clustering has attracted intensive attention due to the effectiveness of exploiting multiple views of data. However, most existing multi-view clustering methods only aim to explore the consistency or enhance the diversity of different views. In this paper, we propose a novel multi-view subspace clustering method (CSMSC), where consistency and specificity are jointly exploited for subspace representation learning. We formulate the multi-view self-representation property using a shared consistent representation and a set of specific representations, which better fits the real-world datasets. Specifically, consistency models the common properties among all views, while specificity captures the inherent difference in each view. In addition, to optimize the non-convex problem, we introduce a convex relaxation and develop an alternating optimization algorithm to recover the corresponding data representations. Experimental evaluations on four benchmark datasets demonstrate that the proposed approach achieves better performance over several state-of-the-arts.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
129 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献