Robust Collaborative Discriminative Learning for RGB-Infrared Tracking

Author:

Lan Xiangyuan,Ye Mang,Zhang Shengping,Yuen Pong

Abstract

Tracking target of interests is an important step for motion perception in intelligent video surveillance systems. While most recently developed tracking algorithms are grounded in RGB image sequences, it should be noted that information from RGB modality is not always reliable (e.g. in a dark environment with poor lighting condition), which urges the need to integrate information from infrared modality for effective tracking because of the insensitivity to illumination condition of infrared thermal camera. However, several issues encountered during the tracking process limit the fusing performance of these heterogeneous modalities: 1) the cross-modality discrepancy of visual and motion characteristics, 2) the uncertainty of degree of reliability in different modalities, and 3) large target appearance variations and background distractions within each modality. To address these issues, this paper proposes a novel and optimal discriminative learning framework for multi-modality tracking. In particular, the proposed discriminative learning framework is able to: 1) jointly eliminate outlier samples caused by large variations and learn discriminability-consistent features from heterogeneous modalities, and 2) collaboratively perform modality reliability measurement and target-background separation. Extensive experiments on RGB-infrared image sequences demonstrate the effectiveness of the proposed method.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MATI: Multimodal Adaptive Tracking Integrator for Robust Visual Object Tracking;Sensors;2024-07-29

2. Knowledge Synergy Learning for Multi-Modal Tracking;IEEE Transactions on Circuits and Systems for Video Technology;2024-07

3. Multi-modal visual tracking: Review and experimental comparison;Computational Visual Media;2024-01-03

4. Thermal Infrared Target Tracking: A Comprehensive Review;IEEE Transactions on Instrumentation and Measurement;2024

5. A Comprehensive Review of RGBT Tracking;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3