CSWA: Aggregation-Free Spatial-Temporal Community Sensing

Author:

Bian Jiang,Xiong Haoyi,Fu Yanjie,Das Sajal

Abstract

In this paper, we present a novel community sensing paradigm CSWA –Community Sensing Without Sensor/Location Data Aggregation. CSWA is designed to obtain the environment information (e.g., air pollution or temperature) in each subarea of the target area, without aggregating sensor and location data collected by community members. CSWA operates on top of a secured peer-to-peer network over the community members and proposes a novel Decentralized Spatial-Temporal Compressive Sensing framework based on Parallelized Stochastic Gradient Descent. Through learning the low-rank structure via distributed optimization, CSWA approximates the value of the sensor data in each subarea (both covered and uncovered) for each sensing cycle using the sensor data locally stored in each member’s mobile device. Simulation experiments based on real-world datasets demonstrate that CSWA exhibits low approximation error (i.e., less than 0.2 centi-degree in city-wide temperature sensing task and 10 units of PM2.5 index in urban air pollution sensing) and performs comparably to (sometimes better than) state-of-the-art algorithms based on the data aggregation and centralized computation.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Few-Shot Data Completion for New Tasks in Sparse Crowdsensing;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

2. Local Overlapping Spatial-aware Community Detection;ACM Transactions on Knowledge Discovery from Data;2024-01-12

3. Outlier-Concerned Data Completion Exploiting Intra- and Inter-Data Correlations in Sparse CrowdSensing;IEEE/ACM Transactions on Networking;2023-04

4. Edge Computing Approach For Crowd Sensed Environmental Noise Data Mapping;2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2022-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3