Author:
Zhang Qi,Fu Jinlan,Liu Xiaoyu,Huang Xuanjing
Abstract
In this study, we investigate the problem of named entity recognition for tweets. Named entity recognition is an important task in natural language processing and has been carefully studied in recent decades. Previous named entity recognition methods usually only used the textual content when processing tweets. However, many tweets contain not only textual content, but also images. Such visual information is also valuable in the name entity recognition task. To make full use of textual and visual information, this paper proposes a novel method to process tweets that contain multimodal information. We extend a bi-directional long short term memory network with conditional random fields and an adaptive co-attention network to achieve this task. To evaluate the proposed methods, we constructed a large scale labeled dataset that contained multimodal tweets. Experimental results demonstrated that the proposed method could achieve a better performance than the previous methods in most cases.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献