Generating Music Medleys via Playing Music Puzzle Games

Author:

Huang Yu-Siang,Chou Szu-Yu,Yang Yi-Hsuan

Abstract

Generating music medleys is about finding an optimal permutation of a given set of music clips. Toward this goal, we propose a self-supervised learning task, called the music puzzle game, to train neural network models to learn the sequential patterns in music. In essence, such a game requires machines to correctly sort a few multisecond music fragments. In the training stage, we learn the model by sampling multiple non-overlapping fragment pairs from the same songs and seeking to predict whether a given pair is consecutive and is in the correct chronological order. For testing, we design a number of puzzle games with different difficulty levels, the most difficult one being music medley, which requiring sorting fragments from different songs. On the basis of state-of-the-art Siamese convolutional network, we propose an improved architecture that learns to embed frame-level similarity scores computed from the input fragment pairs to a common space, where fragment pairs in the correct order can be more easily identified. Our result shows that the resulting model, dubbed as the similarity embedding network (SEN), performs better than competing models across different games, including music jigsaw puzzle, music sequencing, and music medley. Example results can be found at our project website, https://remyhuang.github.io/DJnet.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Few-Shot Learning Algorithm for Rare Sound Event Detection;2022 International Joint Conference on Neural Networks (IJCNN);2022-07-18

2. Deepfake noise investigation and detection;Forensic Science International: Digital Investigation;2022-07

3. Few-Shot Emergency Siren Detection;Sensors;2022-06-08

4. Automatic DJ Transitions with Differentiable Audio Effects and Generative Adversarial Networks;ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3