Augmenting End-to-End Dialogue Systems With Commonsense Knowledge

Author:

Young Tom,Cambria Erik,Chaturvedi Iti,Zhou Hao,Biswas Subham,Huang Minlie

Abstract

Building dialogue systems that can converse naturally with humans is a challenging yet intriguing problem of artificial intelligence. In open-domain human-computer conversation, where the conversational agent is expected to respond to human utterances in an interesting and engaging way, commonsense knowledge has to be integrated into the model effectively. In this paper, we investigate the impact of providing commonsense knowledge about the concepts covered in the dialogue. Our model represents the first attempt to integrating a large commonsense knowledge base into end-to-end conversational models. In the retrieval-based scenario, we propose a model to jointly take into account message content and related commonsense for selecting an appropriate response. Our experiments suggest that the knowledge-augmented models are superior to their knowledge-free counterparts.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PrimeNet: A Framework for Commonsense Knowledge Representation and Reasoning Based on Conceptual Primitives;Cognitive Computation;2024-08-30

2. EmotionIC: emotional inertia and contagion-driven dependency modeling for emotion recognition in conversation;Science China Information Sciences;2024-07-25

3. An Empirical Analysis on Multi-turn Conversational Recommender Systems;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

4. Entity and Evidence Guided Attention for Document-Level Relation Extraction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

5. Knowledge-Enhanced Conversational Agents;Journal of Computer Science and Technology;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3