Classical Planning in Deep Latent Space: Bridging the Subsymbolic-Symbolic Boundary

Author:

Asai Masataro,Fukunaga Alex

Abstract

Current domain-independent, classical planners require symbolic models of the problem domain and instance as input, resulting in a knowledge acquisition bottleneck. Meanwhile, although deep learning has achieved significant success in many fields, the knowledge is encoded in a subsymbolic representation which is incompatible with symbolic systems such as planners. We propose LatPlan, an unsupervised architecture combining deep learning and classical planning. Given only an unlabeled set of image pairs showing a subset of transitions allowed in the environment (training inputs), and a pair of images representing the initial and the goal states (planning inputs), LatPlan finds a plan to the goal state in a symbolic latent space and returns a visualized plan execution. The contribution of this paper is twofold: (1) State Autoencoder, which finds a propositional state representation of the environment using a Variational Autoencoder. It generates a discrete latent vector from the images, based on which a PDDL model can be constructed and then solved by an off-the-shelf planner. (2) Action Autoencoder / Discriminator, a neural architecture which jointly finds the action symbols and the implicit action models (preconditions/effects), and provides a successor function for the implicit graph search. We evaluate LatPlan using image-based versions of 3 planning domains: 8-puzzle, Towers of Hanoi and LightsOut.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discovering Predictive Relational Object Symbols With Symbolic Attentive Layers;IEEE Robotics and Automation Letters;2024-02

2. Towards Adaptive User-centered Neuro-symbolic Learning for Multimodal Interaction with Autonomous Systems;INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION;2023-10-09

3. Learning Type-Generalized Actions for Symbolic Planning;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

4. Analysis of Learning Heuristic Estimates for Grid Planning with Cellular Simultaneous Recurrent Networks;SN Computer Science;2023-09-27

5. Simulated mental imagery for robotic task planning;Frontiers in Neurorobotics;2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3