Generalizing and Improving Bilingual Word Embedding Mappings with a Multi-Step Framework of Linear Transformations

Author:

Artetxe Mikel,Labaka Gorka,Agirre Eneko

Abstract

Using a dictionary to map independently trained word embeddings to a shared space has shown to be an effective approach to learn bilingual word embeddings. In this work, we propose a multi-step framework of linear transformations that generalizes a substantial body of previous work. The core step of the framework is an orthogonal transformation, and existing methods can be explained in terms of the additional normalization, whitening, re-weighting, de-whitening and dimensionality reduction steps. This allows us to gain new insights into the behavior of existing methods, including the effectiveness of inverse regression, and design a novel variant that obtains the best published results in zero-shot bilingual lexicon extraction. The corresponding software is released as an open source project.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-Lingual Word Embedding Generation Based on Procrustes-Hungarian Linear Projection;2024 International Conference on Asian Language Processing (IALP);2024-08-04

2. SeNSe: embedding alignment via semantic anchors selection;International Journal of Data Science and Analytics;2024-03-20

3. Bilingual Lexicon Induction From Comparable and Parallel Data: A Comparative Analysis;Lecture Notes in Computer Science;2024

4. A Scalable Approach to Aligning Natural Language and Knowledge Graph Representations: Batched Information Guided Optimal Transport;2023 IEEE International Conference on Big Data (BigData);2023-12-15

5. Automating the Transition from Dialectal to Literary Forms in Uzbek Language Texts: An Algorithmic Perspective;2023 IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE);2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3