Eliciting Positive Emotion through Affect-Sensitive Dialogue Response Generation: A Neural Network Approach

Author:

Lubis Nurul,Sakti Sakriani,Yoshino Koichiro,Nakamura Satoshi

Abstract

An emotionally-competent computer agent could be a valuable assistive technology in performing various affective tasks. For example caring for the elderly, low-cost ubiquitous chat therapy, and providing emotional support in general, by promoting a more positive emotional state through dialogue system interaction. However, despite the increase of interest in this task, existing works face a number of shortcomings: system scalability, restrictive modeling, and weak emphasis on maximizing user emotional experience. In this paper, we build a fully data driven chat-oriented dialogue system that can dynamically mimic affective human interactions by utilizing a neural network architecture. In particular, we propose a sequence-to-sequence response generator that considers the emotional context of the dialogue. An emotion encoder is trained jointly with the entire network to encode and maintain the emotional context throughout the dialogue. The encoded emotion information is then incorporated in the response generation process. We train the network with a dialogue corpus that contains positive-emotion eliciting responses, collected through crowd-sourcing. Objective evaluation shows that incorporation of emotion into the training process helps reduce the perplexity of the generated responses, even when a small dataset is used. Subsequent subjective evaluation shows that the proposed method produces responses that are more natural and likely to elicit a more positive emotion.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Yes, I am afraid of the sharks and also wild lions!: A multitask framework for enhancing dialogue generation via knowledge and emotion grounding;Computer Speech & Language;2024-08

2. Empathetic Response Generation with Relation-aware Commonsense Knowledge;Proceedings of the 17th ACM International Conference on Web Search and Data Mining;2024-03-04

3. Real-time Emotion Pre-Recognition in Conversations with Contrastive Multi-modal Dialogue Pre-training;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

4. An Overview of Affective Speech Synthesis and Conversion in the Deep Learning Era;Proceedings of the IEEE;2023-10

5. Empowering Dialogue Systems with Affective and Adaptive Interaction: Integrating Social Intelligence;2023 11th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW);2023-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3