Hierarchical Attention Transfer Network for Cross-Domain Sentiment Classification

Author:

Li Zheng,Wei Ying,Zhang Yu,Yang Qiang

Abstract

Cross-domain sentiment classification aims to leverage useful information in a source domain to help do sentiment classification in a target domain that has no or little supervised information. Existing cross-domain sentiment classification methods cannot automatically capture non-pivots, i.e., the domain-specific sentiment words, and pivots, i.e., the domain-shared sentiment words, simultaneously. In order to solve this problem, we propose a Hierarchical Attention Transfer Network (HATN) for cross-domain sentiment classification. The proposed HATN provides a hierarchical attention transfer mechanism which can transfer attentions for emotions across domains by automatically capturing pivots and non-pivots. Besides, the hierarchy of the attention mechanism mirrors the hierarchical structure of documents, which can help locate the pivots and non-pivots better. The proposed HATN consists of two hierarchical attention networks, with one named P-net aiming to find the pivots and the other named NP-net aligning the non-pivots by using the pivots as a bridge. Specifically, P-net firstly conducts individual attention learning to provide positive and negative pivots for NP-net. Then, P-net and NP-net conduct joint attention learning such that the HATN can simultaneously capture pivots and non-pivots and realize transferring attentions for emotions across domains. Experiments on the Amazon review dataset demonstrate the effectiveness of HATN.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Scalable Wireless Indoor Localization: Techniques, Approaches and Directions;Wireless Personal Communications;2024-06

2. <i>L</i>-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection;Computers, Materials & Continua;2024

3. The Improved Inception Networks based on Attention Mechanism;Proceedings of the 2023 8th International Conference on Intelligent Information Processing;2023-11-21

4. Multivariate Anomaly Detection with Domain Clustering;Proceedings of the 2023 ACM Symposium on Cloud Computing;2023-10-30

5. Graph embedding-based Anomaly localization for HVAC system;Journal of Building Engineering;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3