Top-Down Feedback for Crowd Counting Convolutional Neural Network

Author:

Babu Sam Deepak,Babu R. Venkatesh

Abstract

Counting people in dense crowds is a demanding task even for humans. This is primarily due to the large variability in appearance of people. Often people are only seen as a bunch of blobs. Occlusions, pose variations and background clutter further compound the difficulty. In this scenario, identifying a person requires larger spatial context and semantics of the scene. But the current state-of-the-art CNN regressors for crowd counting are feedforward and use only limited spatial context to detect people. They look for local crowd patterns to regress the crowd density map, resulting in false predictions. Hence, we propose top-down feedback to correct the initial prediction of the CNN. Our architecture consists of a bottom-up CNN along with a separate top-down CNN to generate feedback. The bottom-up network, which regresses the crowd density map, has two columns of CNN with different receptive fields. Features from various layers of the bottom-up CNN are fed to the top-down network. The feedback, thus generated, is applied on the lower layers of the bottom-up network in the form of multiplicative gating. This masking weighs activations of the bottom-up network at spatial as well as feature levels to correct the density prediction. We evaluate the performance of our model on all major crowd datasets and show the effectiveness of top-down feedback.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Selectivity and Competition of the Mind’s Eye in Visual Perception;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

2. Double multi-scale feature fusion network for crowd counting;Multimedia Tools and Applications;2024-03-07

3. A lightweight dense crowd density estimation network for efficient compression models;Expert Systems with Applications;2024-03

4. Iterative Feedback Network for Unsupervised Point Cloud Registration;IEEE Robotics and Automation Letters;2024-03

5. An Effective Lightweight Crowd Counting Method Based on an Encoder–Decoder Network for Internet of Video Things;IEEE Internet of Things Journal;2024-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3