Neural Knowledge Acquisition via Mutual Attention Between Knowledge Graph and Text

Author:

Han Xu,Liu Zhiyuan,Sun Maosong

Abstract

We propose a general joint representation learning framework for knowledge acquisition (KA) on two tasks, knowledge graph completion (KGC) and relation extraction (RE) from text. In this framework, we learn representations of knowledge graphs (KGs) and text within a unified parameter sharing semantic space. To achieve better fusion, we propose an effective mutual attention between KGs and text. The reciprocal attention mechanism enables us to highlight important features and perform better KGC and RE. Different from conventional joint models, no complicated linguistic analysis or strict alignments between KGs and text are required to train our models. Experiments on relation extraction and entity link prediction show that models trained under our joint framework are significantly improved in comparison with other baselines. Most existing methods for KGC and RE can be easily integrated into our framework due to its flexible architectures. The source code of this paper can be obtained from https://github.com/thunlp/JointNRE.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TCohPrompt: task-coherent prompt-oriented fine-tuning for relation extraction;Complex & Intelligent Systems;2024-07-22

2. Multi-modal Entity Alignment via Position-enhanced Multi-label Propagation;Proceedings of the 2024 International Conference on Multimedia Retrieval;2024-05-30

3. Sentence-level Distant Supervision Relation Extraction based on Dynamic Soft Labels;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

4. Knowledge Base Grounded Pre-trained Language Models via Distillation;Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing;2024-04-08

5. Survey and open problems in privacy-preserving knowledge graph: merging, query, representation, completion, and applications;International Journal of Machine Learning and Cybernetics;2024-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3