Targeted Aspect-Based Sentiment Analysis via Embedding Commonsense Knowledge into an Attentive LSTM

Author:

Ma Yukun,Peng Haiyun,Cambria Erik

Abstract

Analyzing people’s opinions and sentiments towards certain aspects is an important task of natural language understanding. In this paper, we propose a novel solution to targeted aspect-based sentiment analysis, which tackles the challenges of both aspect-based sentiment analysis and targeted sentiment analysis by exploiting commonsense knowledge. We augment the long short-term memory (LSTM) network with a hierarchical attention mechanism consisting of a target-level attention and a sentence-level attention. Commonsense knowledge of sentiment-related concepts is incorporated into the end-to-end training of a deep neural network for sentiment classification. In order to tightly integrate the commonsense knowledge into the recurrent encoder, we propose an extension of LSTM, termed Sentic LSTM. We conduct experiments on two publicly released datasets, which show that the combination of the proposed attention architecture and Sentic LSTM can outperform state-of-the-art methods in targeted aspect sentiment tasks.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3