Towards Perceptual Image Dehazing by Physics-Based Disentanglement and Adversarial Training

Author:

Yang Xitong,Xu Zheng,Luo Jiebo

Abstract

Single image dehazing is a challenging under-constrained problem because of the ambiguities of unknown scene radiance and transmission. Previous methods solve this problem using various hand-designed priors or by supervised training on synthetic hazy image pairs. In practice, however, the predefined priors are easily violated and the paired image data is unavailable for supervised training. In this work, we propose Disentangled Dehazing Network, an end-to-end model that generates realistic haze-free images using only unpaired supervision. Our approach alleviates the paired training constraint by introducing a physical-model based disentanglement and reconstruction mechanism. A multi-scale adversarial training is employed to generate perceptually haze-free images. Experimental results on synthetic datasets demonstrate our superior performance compared with the state-of-the-art methods in terms of PSNR, SSIM and CIEDE2000. Through training on purely natural haze-free and hazy images from our collected HazyCity dataset, our model can generate more perceptually appealing dehazing results.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised multi-branch network with high-frequency enhancement for image dehazing;Pattern Recognition;2024-12

2. Compensation Atmospheric Scattering Model and Two-Branch Network for Single Image Dehazing;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-08

3. A semi-supervised video dehazing method based on CNNs;Signal, Image and Video Processing;2024-07-02

4. Photo realistic synthetic dataset and multi-scale attention dehazing network;Engineering Applications of Artificial Intelligence;2024-07

5. MIDNet: A Weakly Supervised Multipath Interaction Network for Image Defogging*;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3