A Plasticity-Centric Approach to Train the Non-Differential Spiking Neural Networks

Author:

Zhang Tielin,Zeng Yi,Zhao Dongcheng,Shi Mengting

Abstract

Many efforts have been taken to train spiking neural networks (SNNs), but most of them still need improvements due to the discontinuous and non-differential characteristics of SNNs. While the mammalian brains solve these kinds of problems by integrating a series of biological plasticity learning rules. In this paper, we will focus on two biological plausible methodologies and try to solve these catastrophic training problems in SNNs. Firstly, the biological neural network will try to keep a balance between inputs and outputs on both the neuron and the network levels. Secondly, the biological synaptic weights will be passively updated by the changes of the membrane potentials of the neighbour-hood neurons, and the plasticity of synapses will not propagate back to other previous layers. With these biological inspirations, we propose Voltage-driven Plasticity-centric SNN (VPSNN), which includes four steps, namely: feed forward inference, unsupervised equilibrium state learning, supervised last layer learning and passively updating synaptic weights based on spike-timing dependent plasticity (STDP). Finally we get the accuracy of 98.52% on the hand-written digits classification task on MNIST. In addition, with the help of a visualization tool, we try to analyze the black box of SNN and get better understanding of what benefits have been acquired by the proposed method.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3