ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation

Author:

Zhou Chang,Bai Jinze,Song Junshuai,Liu Xiaofei,Zhao Zhengchao,Chen Xiusi,Gao Jun

Abstract

A user can be represented as what he/she does along the history. A common way to deal with the user modeling problem is to manually extract all kinds of aggregated features over the heterogeneous behaviors, which may fail to fully represent the data itself due to limited human instinct. Recent works usually use RNN-based methods to give an overall embedding of a behavior sequence, which then could be exploited by the downstream applications. However, this can only preserve very limited information, or aggregated memories of a person. When a downstream application requires to facilitate the modeled user features, it may lose the integrity of the specific highly correlated behavior of the user, and introduce noises derived from unrelated behaviors. This paper proposes an attention based user behavior modeling framework called ATRank, which we mainly use for recommendation tasks. Heterogeneous user behaviors are considered in our model that we project all types of behaviors into multiple latent semantic spaces, where influence can be made among the behaviors via self-attention. Downstream applications then can use the user behavior vectors via vanilla attention. Experiments show that ATRank can achieve better performance and faster training process. We further explore ATRank to use one unified model to predict different types of user behaviors at the same time, showing a comparable performance with the highly optimized individual models.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3