AdaComp : Adaptive Residual Gradient Compression for Data-Parallel Distributed Training

Author:

Chen Chia-Yu,Choi Jungwook,Brand Daniel,Agrawal Ankur,Zhang Wei,Gopalakrishnan Kailash

Abstract

Highly distributed training of Deep Neural Networks (DNNs) on future compute platforms (offering 100 of TeraOps/s of computational capacity) is expected to be severely communication constrained. To overcome this limitation, new gradient compression techniques are needed that are computationally friendly, applicable to a wide variety of layers seen in Deep Neural Networks and adaptable to variations in network architectures as well as their hyper-parameters. In this paper we introduce a novel technique - the Adaptive Residual Gradient Compression (AdaComp) scheme. AdaComp is based on localized selection of gradient residues and automatically tunes the compression rate depending on local activity. We show excellent results on a wide spectrum of state of the art Deep Learning models in multiple domains (vision, speech, language), datasets (MNIST, CIFAR10, ImageNet, BN50, Shakespeare), optimizers (SGD with momentum, Adam) and network parameters (number of learners, minibatch-size etc.). Exploiting both sparsity and quantization, we demonstrate end-to-end compression rates of ∼200× for fully-connected and recurrent layers, and ∼40× for convolutional layers, without any noticeable degradation in model accuracies.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Communication-Efficient and Privacy-Preserving Aggregation in Federated Learning With Adaptability;IEEE Internet of Things Journal;2024-08-01

2. FedSZ: Leveraging Error-Bounded Lossy Compression for Federated Learning Communications;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23

3. Adaptive Top-K in SGD for Communication-Efficient Distributed Learning in Multi-Robot Collaboration;IEEE Journal of Selected Topics in Signal Processing;2024-04

4. Smart-Infinity: Fast Large Language Model Training using Near-Storage Processing on a Real System;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

5. Distributed Analytics For Big Data: A Survey;Neurocomputing;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3